WEIGHTED APPROXIMATION
BY KANTOROVICH TYPE MODIFICATION
OF MEYER-KÖNIG AND ZELLER OPERATOR

IVAN GADJEV, PARVAN PARVANOV, RUMEN ULUCHEV

We investigate the weighted approximation of functions in L_p-norm by Kantorovich modifications of the classical Meyer-König and Zeller operator, with weights of type $(1 - x)^\alpha$, $\alpha \in \mathbb{R}$. By defining an appropriate K-functional we prove direct theorems for them.

Keywords: Meyer-König and Zeller operator, K-functional, direct theorem, moduli of smoothness.

1. INTRODUCTION

In order to approximate unbounded functions in uniform norm in $[0,1)$, Meyer-König and Zeller (see [15]) introduced a new operator by the formula

$$M_n(f; x) = \sum_{k=0}^{\infty} m_{n,k}(x) f\left(\frac{k}{n + k}\right), \quad (1.1)$$

where

$$m_{n,k}(x) = \binom{n+k}{k} x^k (1 - x)^{n+1}. \quad (1.2)$$

But this operator cannot be used to approximate functions in L_p-norm because it is not bounded operator in L_p. Some kind of modification is needed. In this paper

we investigate the weighted approximation of functions in L^p-norm by Kantorovich modifications of the classical Meyer-König and Zeller (MKZ) operator.

In 1930, Kantorovich [13] suggested a modification of the classical Bernstein operator, replacing the function values by mean values. Analogously, Totik [16] introduced Kantorovich type modification of MKZ operator:

$$\tilde{M}_n^*(f;x) = \sum_{k=0}^{\infty} m_{n,k}(x) \frac{(n + k)(n + k + 1)}{n} \int_{\frac{k}{n+k+1}}^{\frac{k+1}{n+k+2}} f(u) \, du,$$

and proved direct and converse theorems of weak type in terminology of Ditzian and Ivanov [4] for it. Although this definition looks as the most natural one, the operator \tilde{M}_n^* is not a contraction, hence it is not very suitable for approximating functions in L^p-norm for $p < \infty$.

In [14] Müller defined a Kantorovich modification of MKZ operator in a slightly different way, so that the resulting operator is a contraction:

$$\tilde{M}_n(f;x) = \tilde{M}_n f(x) = \sum_{k=0}^{\infty} m_{n,k}(x) \frac{(n + k + 1)(n + k + 2)}{n + 1} \int_{\frac{k}{n+k+1}}^{\frac{k+1}{n+k+2}} f(u) \, du. \quad (1.3)$$

Recently, in [11] by introducing an appropriate K-functional the first author proved a direct theorem for the operators $\tilde{M}_n(f;x)$. Our goal in this paper is to extend this result for the case of weighted approximation of functions in L^p-norm by $\tilde{M}_n(f;x)$ operator.

Let us introduce some notations. For the sake of simplicity and brevity of our presentation we set

$$\gamma_{n,k} = \frac{(n + k + 1)(n + k + 2)}{n + 1}, \quad \Delta_{n,k} = \left[\frac{k}{n + k + 1}, \frac{k + 1}{n + k + 2} \right]. \quad (1.4)$$

Then, the Kantorovich modification of MKZ operator (1.3) takes the form

$$\tilde{M}_n(f;x) = \sum_{k=0}^{\infty} \gamma_{n,k} m_{n,k}(x) \int_{\Delta_{n,k}} f(u) \, du.$$

The weights under consideration in our survey are

$$w(x) = (1 - x)^\alpha, \quad \alpha \in \mathbb{R}. \quad (1.5)$$

By $\varphi(x) = x(1 - x)^2$ we denote the weight which is naturally related to the second derivative of MKZ operator. The usual first derivative operator is denoted by $D = \frac{d}{dx}$. Thus, $Dg(x) = g'(x)$ and $D^k g(x) = g^{(k)}(x)$ for every $k \in \mathbb{N}$.

We define a differential operator \tilde{D} by the formula

$$\tilde{D} = \frac{d}{dx} \left(\varphi(x) \frac{d}{dx} \right) = D \varphi D.$$
We set

\[L_p(w) = \{ f : w f \in L_p(0,1) \}, \]

\[W_p(w) = \left\{ \begin{array}{l} \{ f : f, Df \in AC_{loc}(0,1), wDf \in L_p[0,1], \lim_{x \to 0^+} \varphi(x)Df(x) = 0 \}, \alpha < 0, \\ \{ f : f, Df \in AC_{loc}(0,1), wDf \in L_p[0,1], \lim_{x \to 0^+} \varphi(x)Df(x) = 0 \}, \alpha \geq 0, \end{array} \right. \]

Also, we define a K-functional \(\tilde{K}_w(f,t)_p \) for \(t > 0 \) by

\[\tilde{K}_w(f,t)_p = \inf \|w(f-g)\|_p + t\|wDg\|_p : f-g \in L_p(w), g \in W_p(w). \]

(1.6)

Our main result is the following theorem.

Theorem 1. For \(1 \leq p \leq \infty \), \(w \) defined by (1.5), \(\tilde{M}_n \) defined by (1.3), and the K-functional given by (1.6) there exists a positive constant \(C \) such that for every \(n > |\alpha|, n \in \mathbb{N} \), and for all functions \(f \in L_p(w) + W_p(w) \) there holds

\[\|w(M_n f - f)\|_p \leq C \tilde{K}_w(f, \frac{1}{n})_p. \]

(1.7)

Remark 1. Converse theorem remains an open problem even for the non-weighted case, i.e., for \(w(x) = 1 \) in (1.5).

Problems on characterization of weighted K-functionals by moduli of smoothness were considered by Draganov and Ivanov in [6, 7, 9]. Particularly, they characterized the K-functional

\[K_w(f,t)_p = \inf \{ \|w(f-g)\|_p + t\|wD^2g\|_p : g, Dg \in AC_{loc}(0,1), f-g, \varphi D^2g \in L_p(w) \}. \]

(1.8)

In this paper we also show that the same moduli of smoothness can be used for computing the K-functional \(K_w(f,t)_p \). So, we prove the next statement.

Theorem 2. For \(1 < p < \infty \) and \(w \), \(\tilde{K}_w(f,t)_p \), \(K_w(f,t)_p \), defined by (1.5), (1.6) and (1.8), respectively, there exists a positive constant \(C \) such that for all \(f \in L_p(w) + W_p(w) \) there holds

\[\tilde{K}_w(f,t)_p \leq C (K_w(f,t)_p + tE_0(f)), \]

where \(E_0(f) = \inf_{c \in \mathbb{R}} \|w(f-c)\|_p \) is the best weighted approximation to \(f \) by a constant.

Remark 2. For \(p = 1 \) and \(p = \infty \) new moduli are needed. Also, a problem on characterization of the K-functional \(\tilde{K}_w(f,t)_p \) arises, but it is not the subject of our survey here.
Henceforth, the constant \(C \) will always be an absolute positive constant, which means it does not depend on \(f \) and \(n \). Also, it may be different on each occurrence. The relation \(\theta_1(f, t) \sim \theta_2(f, t) \) means that there exists a constant \(c \geq 1 \), independent of \(f \) and \(t \), such that

\[
c^{-1}\theta_1(f, t) \leq \theta_2(f, t) \leq c\theta_1(f, t).
\]

2. AUXILIARY RESULTS

In this section we present some properties of the operators \(M_n, \tilde{M}_n \), basis functions \(m_{n,k} \) (see [1, 10, 12]), and prove auxiliary lemmas that we need further.

The operators \(M_n \) and \(\tilde{M}_n \) are linear positive operators with

\[
\|M_n f\|_{\infty} \leq \|f\|_{\infty} \quad \text{and} \quad \|\tilde{M}_n\|_1 = 1.
\]

Moreover,

\[
\|\tilde{M}_n\|_p \leq 1, \quad 1 \leq p \leq \infty, \quad (2.1)
\]

\[
M_n(1; x) = 1, \quad M_n(t - x; x) = 0, \quad (2.2)
\]

\[
\tilde{M}_n(1; x) = 1. \quad (2.3)
\]

A direct integration yields the identity:

\[
\int_0^1 m_{n,k}(x)dx = \frac{1}{\gamma_{n,k}}. \quad (2.4)
\]

We shall need the next three properties of the functions \(\{m_{n,k}\}_{k=0}^{\infty} \), defined by (1.2) (for proofs, see e.g., [11]).

Lemma 1. If \(n \in \mathbb{N} \), then

\[
\frac{1}{1 - x} = \frac{1}{n + 1} \sum_{k=0}^{\infty} (n + k + 1)m_{n,k}(x), \quad x \in [0, 1). \quad (2.5)
\]

Lemma 2. If \(n \in \mathbb{N} \), then

\[
\sum_{k=1}^{n} \frac{(1 - x)^k}{k} = \sum_{k=0}^{\infty} m_{n,k}(x) \sum_{j=1}^{n} \frac{1}{k + j}, \quad x \in [0, 1). \quad (2.6)
\]

Lemma 3. There exists an absolute constant \(C \) such that for every \(n \in \mathbb{N} \) the following inequality holds true:

\[
\left| \ln(1 - x) + \sum_{k=0}^{\infty} m_{n,k}(x) \sum_{j=1}^{k+1} \frac{1}{n + j} \right| \leq \frac{C}{n}, \quad x \in [0, 1). \quad (2.7)
\]
In [16, Lemma 3] Totik proved that for $1 \leq p < \infty$,

$$
\| (1 - x) Df(x) \|_p \leq C(\| f \|_p + \| \varphi D^2 f \|_p).
$$

(2.8)

In order to prove our main results we need a few additional lemmas.

Lemma 4. For every integer ν there exists a constant $C = C(\nu)$, such that

$$
\sum_{k=0}^{\infty} \left(1 - \frac{k}{n + k + 1}\right)^\nu m_{n,k}(x) \leq C(1 - x)^\nu, \quad x \in [0,1),
$$

(2.9)

for all $n > |\nu|$, $n \in \mathbb{N}$.

Proof. We have

$$
\sum_{k=0}^{\infty} \left(1 - \frac{k}{n + k + 1}\right)^\nu m_{n,k}(x)
= \sum_{k=0}^{\infty} \left(\frac{n + 1}{n + k + 1}\right)^\nu \left(\frac{n + k}{k}\right)^x (1 - x)^{n+1}
= (1 - x)^\nu \sum_{k=0}^{\infty} \frac{(n + 1)^\nu (n + k - \nu + 1) \cdots (n + k)}{(n - \nu + 1) \cdots n (n + k + 1)^\nu} m_{n - \nu,k}(x)
\leq (1 - x)^\nu \sum_{k=0}^{\infty} C(\nu) m_{n - \nu,k}(x)
= C(\nu)(1 - x)^\nu.
$$

□

Lemma 5. For every $\alpha \in \mathbb{R}$ there exists a constant $C = C(\alpha)$, such that the following inequality is satisfied:

$$
\sum_{k=0}^{\infty} \left(1 - \frac{k}{n + k + 1}\right)^\alpha m_{n,k}(x) \leq C(1 - x)^\alpha, \quad x \in [0,1),
$$

(2.10)

for all $n > |\alpha|$, $n \in \mathbb{N}$.

Proof. Let ν be the smallest positive integer such that $\nu \geq |\alpha|$. Then, by Hölder’s inequality it follows that

$$
\sum_{k=0}^{\infty} \left(1 - \frac{k}{n + k + 1}\right)^\alpha m_{n,k}(x)
\leq \left(\sum_{k=0}^{\infty} \left(1 - \frac{k}{n + k + 1}\right)^{\nu \text{sign}(\alpha)} m_{n,k}(x) \right)^{\alpha/\nu} \left(\sum_{k=0}^{\infty} m_{n,k}(x) \right)^{1 - |\alpha|/\nu}.
$$
Applying Lemma 4 we obtain
\[
\left(\sum_{k=0}^{\infty} \left(1 - \frac{k}{n+k+1}\right)^{\nu \sign(\alpha)} m_{n,k}(x)\right)^{|\alpha|/\nu} \leq (C(1-x)^{\nu \sign(\alpha)})^{|\alpha|/\nu} = C(\alpha)(1-x)^{\alpha}.
\]
Therefore,
\[
\sum_{k=0}^{\infty} \left(1 - \frac{k}{n+k+1}\right)^{\alpha} m_{n,k}(x) \leq C(\alpha)(1-x)^{\alpha}
\]
and the lemma is proved. \(\square\)

The next lemma is a weighted variant of (2.1).

Lemma 6. Let \(1 \leq p \leq \infty\) and \(\alpha \in \mathbb{R}\). Then, there exists an absolute constant \(C\) such that for all \(n > |\alpha|, n \in \mathbb{N}\), and \(f \in L_p(w)\), we have
\[
\|w \tilde{M}_nf\|_p \leq C \|wf\|_p. \tag{2.11}
\]

Proof. First we prove (2.11) for \(p = 1\) and \(p = \infty\). Then, by applying Riesz-Thorin theorem we obtain the estimation for every \(1 < p < \infty\).

The case \(p = 1\). We have
\[
\|w \tilde{M}_nf\|_1 = \int_0^1 w(x) \left| \sum_{k=0}^{\infty} \gamma_{n,k} m_{n,k}(x) \int_{\Delta_{n,k}} f(t) \ dt \right| \ dx
\]
\[
\leq \int_0^1 w(x) \left[\sum_{k=0}^{\infty} \gamma_{n,k} m_{n,k}(x) \int_{\Delta_{n,k}} \frac{|(wf)(t)|}{w(t)} \ dt \right] \ dx
\]
\[
\leq C \int_0^1 \left[\sum_{k=0}^{\infty} \frac{w(x)}{w\left(\frac{k}{n+k+1}\right)} m_{n,k}(x) \int_{\Delta_{n,k}} |(wf)(t)| \ dt \right] \ dx
\]
\[
= C \int_0^1 \sum_{k=0}^{\infty} \left(1 - \frac{x}{1 - \frac{k}{n+k+1}}\right)^{\alpha} a_{n,k} m_{n,k}(x) \ dx,
\]
where we set
\[
a_{n,k} = \gamma_{n,k} \int_{\Delta_{n,k}} |(wf)(t)| \ dt.
\]

Let \(\nu = \lceil |\alpha| \rceil\) be the smallest positive integer such that \(\nu \geq |\alpha|\). Applying Hölder’s inequality twice we obtain
\[
\sum_{k=0}^{\infty} \left(\frac{1 - x}{1 - \frac{k}{n+k+1}}\right)^{\alpha} a_{n,k} m_{n,k}(x)
\]
\[
\leq \left[\sum_{k=0}^{\infty} \left(\frac{1 - x}{1 - \frac{k}{n+k+1}}\right)^{\nu \sign(\alpha)} a_{n,k} m_{n,k}(x) \right]^{\nu/\nu} \left[\sum_{k=0}^{\infty} a_{n,k} m_{n,k}(x) \right]^{1-\nu/\nu},
\]

thus
\[||w\hat{M}_n f||_1 \leq C \left(\sum_{k=0}^{\infty} \left(\frac{1 - x}{1 - \frac{k}{n+k+1}} \right)^{\nu \text{ sign}(\alpha)} a_{n,k} m_{n,k}(x) \right)^{\frac{\alpha}{\nu}} \]
\[\times \left(\sum_{k=0}^{\infty} a_{n,k} m_{n,k}(x) \right)^{1 - \frac{\alpha}{\nu}}. \] \hspace{1cm} (2.12)

Now, we estimate the first nonconstant multiplier in the right-hand side of inequality (2.12). Let \(\ell = \nu \text{ sign}(\alpha) \). For every integer number \(\ell \) we have
\[\left(\frac{1 - x}{1 - \frac{k}{n+k+1}} \right)^{\ell} m_{n,k}(x) = \frac{(n+k+1)^{\ell} (n+1) \cdots (n+\ell)}{(n+k+1) \cdots (n+k+\ell)} m_{n+\ell,k}(x) \]
\[\leq C(\ell) m_{n+\ell,k}(x), \]
hence
\[\sum_{k=0}^{\infty} \left(\frac{1 - x}{1 - \frac{k}{n+k+1}} \right)^{\ell} a_{n,k} m_{n,k}(x) \leq C(\ell) \sum_{k=0}^{\infty} a_{n,k} m_{n+\ell,k}(x). \]

Then, by (2.4),
\[\left\| \sum_{k=0}^{\infty} \left(\frac{1 - x}{1 - \frac{k}{n+k+1}} \right)^{\ell} a_{n,k} m_{n,k}(x) \right\|_1 \leq C \left\| \sum_{k=0}^{\infty} a_{n,k} m_{n+\ell,k}(x) \right\|_1 \]
\[\leq C \sum_{k=0}^{\infty} a_{n,k} \| m_{n+\ell,k}(x) \|_1 = C \sum_{k=0}^{\infty} \frac{\gamma_{n,k}}{\gamma_{n+\ell,k}} \int_{\Delta_{n,k}} |(wf)(t)| dt \]
\[\leq C \sum_{k=0}^{\infty} \int_{\Delta_{n,k}} |(wf)(t)| dt = C \|wf\|_1. \]

Since \(\sum_{k=0}^{\infty} a_{n,k} m_{n,k}(x) = \hat{M}_n(wf; x) \) and \(\|\hat{M}_n(wf)\|_1 \leq \|wf\|_1 \) by (2.1), then for the last multiplier in the right-hand side of (2.12) we obtain the inequality
\[\| \sum_{k=0}^{\infty} a_{n,k} m_{n,k}(x) \|_1 \leq \|wf\|_1. \] Therefore,
\[||w\hat{M}_n f||_1 \leq C ||wf||_1^{\frac{\alpha}{\nu}} ||wf||_1^{1 - \frac{\alpha}{\nu}} = C ||wf||_1 \]
and the proof of the estimate (2.11) for \(p = 1 \) is complete.
The case $p = \infty$. We obtain
\[
\left| \frac{w(x)}{\Delta_{n,k}} \sum_{k=0}^{\infty} \Gamma_{n,k} m_{n,k}(x) \int_{\Delta_{n,k}} f(t) \, dt \right| \leq w(x) \sum_{k=0}^{\infty} \Gamma_{n,k} m_{n,k}(x) \int_{\Delta_{n,k}} \frac{|w f(t)|}{w(t)} \, dt \\
\leq C w(x) \sum_{k=0}^{\infty} \frac{\Gamma_{n,k} m_{n,k}(x)}{w(\frac{k}{n+k+1})} \int_{\Delta_{n,k}} |w f(t)| \, dt \\
\leq C w(x) \sum_{k=0}^{\infty} \frac{m_{n,k}(x)}{w(\frac{k}{n+k+1})} \left\| w f \right\|_{\infty} \\
= C w(x) \left\| w f \right\|_{\infty} \sum_{k=0}^{\infty} \left(1 - \frac{k}{n+k+1} \right)^{-\alpha} m_{n,k}(x).
\]

Now, by Lemma 5 we have
\[
\sum_{k=0}^{\infty} \left(1 - \frac{k}{n+k+1} \right)^{-\alpha} m_{n,k}(x) \leq C (1 - x)^{-\alpha}.
\]

Hence,
\[
\left\| w \tilde{M}_n f \right\|_{\infty} \leq C w(x) \left\| w f \right\|_{\infty} (1 - x)^{-\alpha} = C \left\| w f \right\|_{\infty},
\]
which proves (2.11) in the case $p = \infty$.

Finally, the inequality (2.11) follows for all $1 \leq p \leq \infty$ by the Riesz-Thorin interpolation theorem. □

The crucial result in our investigation is the following Jackson type inequality.

Lemma 7. Let $1 \leq p \leq \infty$ and $\alpha \in \mathbb{R}$. Then there exists an absolute constant C, such that for all $n > \|\alpha\|$, $n \in \mathbb{N}$, and $f \in W^p_w$, the following estimate holds true:
\[
\left\| w \tilde{M}_n f - f \right\|_p \leq \frac{C}{n} \left\| w \tilde{D} f \right\|_p.
\] (2.13)

(Let us note that the lemma implies that $\tilde{M}_n f - f \in L^p_w$ for $f \in W^p_w$.)

Proof. Let us set
\[
\phi(x) = \ln \frac{x}{1-x} + \frac{1}{1-x}, \quad x \in (0,1),
\]
with $\phi'(x) = \frac{1}{x(1-x)} = \frac{1}{\varphi(x)} > 0$, i.e., $\phi(x)$ is an increasing function. Then we have
\[
f(t) = f(x) + \varphi(x)[\phi(t) - \phi(x)] Df(x) + \int_x^t [\phi(u) - \phi(t)] Df(u) \, du, \quad t \in (0,1).
\]
Applying the operator \tilde{M}_n to both sides of the latter equality and multiplying by $w(x)$ we obtain
\[
w(x)(\tilde{M}_nf(x) - f(x)) = w(x)\varphi(x)Df(x)[\tilde{M}_n\phi(x) - \phi(x)]
+ w(x)\tilde{M}_n\left(\int_x^{(1)} [\phi(\cdot) - \phi(u)]\tilde{D}f(u) \, du; x\right). \tag{2.14}
\]

First we prove the lemma for $p = 1$ and $p = \infty$. Then we apply the Riesz-Thornin theorem to obtain (2.13) for every $1 < p < \infty$.

The case $p = 1$. In order to prove that
\[
\|w\varphi Df [\tilde{M}_n\phi - \phi]\|_1 \leq \frac{C}{n}\|w\tilde{D}f\|_1 \tag{2.15}
\]
for all weights (1.5), we shall make use of the estimate
\[
\|\tilde{M}_n\phi - \phi\|_1 \leq \frac{C}{n} \tag{2.16}
\]
(see [11, Proof of Theorem 1] for a complete proof).

Let $\alpha > 0$ be fixed. Then, for all $n > \alpha$ and $f \in W_1(w)$ we have
\[
\varphi(x)Df(x) = \int_0^x (\varphi Df)'(u) \, du = \int_0^x \tilde{D}f(u) \, du, \quad x \in (0, 1).
\]
Hence,
\[
|w(x)\varphi(x)Df(x)| \leq w(x)\int_0^x |\tilde{D}f(u)| \, du \leq \int_0^x |(w\tilde{D}f)(u)| \, du \leq \int_0^1 |(w\tilde{D}f)(u)| \, du,
\]
i.e.,
\[
|w(x)\varphi(x)Df(x)| \leq \|w\tilde{D}f\|_1, \quad x \in (0, 1).
\]
Thus,
\[
\|w\varphi Df [\tilde{M}_n\phi - \phi]\|_1 \leq \|w\tilde{D}f\|_1 \|\tilde{M}_n\phi - \phi\|_1
\]
and (2.15) follows from (2.16).

Similarly, let $\alpha < 0$ be fixed. Then, for all $n > -\alpha$ we have $-n < \alpha < 0$ and for $f \in W_1(w)$, we consecutively obtain
\[
\varphi(x)Df(x) = \int_x^1 (\varphi Df)'(u) \, du = \int_x^1 \tilde{D}f(u) \, du, \quad x \in (0, 1),
\]
\[
|w(x)\varphi(x)Df(x)| \leq w(x)\int_x^1 |\tilde{D}f(u)| \, du \leq \int_x^1 |(w\tilde{D}f)(u)| \, du \leq \int_0^1 |(w\tilde{D}f)(u)| \, du,
\]
i.e.,
\[
|w(x)\varphi(x)Df(x)| \leq \|w\tilde{D}f\|_1, \quad x \in (0, 1).
\]
Hence, (2.16) yields (2.15).

Therefore, for arbitrary \(\alpha \in \mathbb{R} \setminus \{0\} \) and \(f \in W_1(w) \) the estimate (2.15) holds true for \(n > |\alpha| \). The case \(\alpha = 0 \) was considered by the first author in [11].

Now, we estimate the \(L_1 \)-norm of the second summand in the right-hand side of (2.14). More precisely, we will prove

\[
\left\| w(x)M_n \left(\int_x^{(\cdot)} [\phi(\cdot) - \phi(u)] \hat{D}f(u) \, du \right) \right\|_1 \leq \frac{C}{n} \| \hat{w} \hat{D}f \|_1. \tag{2.17}
\]

Having in mind (1.4), for \(x \in (0,1) \) we have

\[
\left| w(x)M_n \left(\int_x^{(\cdot)} [\phi(\cdot) - \phi(u)] \hat{D}f(u) \, du \right) \right| \\
\leq w(x) \sum_{k=0}^{\infty} \gamma_{n,k} m_{n,k}(x) \int_{\Delta_{n,k}} \left(\int_x^t [\phi(t) - \phi(u)] \frac{|(w \hat{D}f)(u)|}{w(u)} \, du \right) dt \\
\leq C w(x) \sum_{k=0}^{\infty} \gamma_{n,k} m_{n,k}(x) \\
\times \left(\frac{1}{w(x)} + \frac{1}{w(n+k+1)} \right) \int_{\Delta_{n,k}} \left(\int_x^t [\phi(t) - \phi(u)] |(w \hat{D}f)(u)| \, du \right) dt \\
\leq C \sum_{k=0}^{\infty} \left(\frac{w(x)}{w(n+k+1)} + 1 \right) b_{n,k} m_{n,k}(x),
\]

where

\[
b_{n,k} = \gamma_{n,k} \int_{\Delta_{n,k}} \left(\int_x^t [\phi(t) - \phi(u)] |(w \hat{D}f)(u)| \, du \right) dt.
\]

Let \(\nu \) be the smallest positive integer such that \(\nu \geq |\alpha| \). Applying twice Hölder's inequality we obtain

\[
\sum_{k=0}^{\infty} \frac{w(x)}{w(n+k+1)} b_{n,k} m_{n,k}(x) \leq \left[\sum_{k=0}^{\infty} \left(\frac{w(x)}{w(n+k+1)} \right)^{\nu/|\alpha|} b_{n,k} m_{n,k}(x) \right]^{\nu/|\alpha|} \\
\times \left[\sum_{k=0}^{\infty} b_{n,k} m_{n,k}(x) \right]^{-1-|\alpha|/\nu},
\]

thus

\[
\left\| w(x)M_n \left(\int_x^{(\cdot)} [\phi(\cdot) - \phi(u)] \hat{D}f(u) \, du \right) \right\|_1 \\
\leq C \left\| \sum_{k=0}^{\infty} \left(\frac{w(x)}{w(n+k+1)} \right)^{\nu/|\alpha|} b_{n,k} m_{n,k} \right\|_1^{\nu/|\alpha|} \left\| \sum_{k=0}^{\infty} b_{n,k} m_{n,k} \right\|_1^{-1-|\alpha|/\nu}. \tag{2.18}
\]

\[\text{Ann. Sofia Univ., Fac. Math and Inf., 105, 2018, 75–95.}\]
For estimation of the last factor in (2.18) we apply the estimate from [11] (see Proof of Theorem 1, Case 1, therein), by simply replacing \(\tilde{D}f \) with \(w \tilde{D}f \). So, we obtain

\[
\left\| \sum_{k=0}^{\infty} b_{n,k} m_{n,k} \right\|_1 \leq \frac{C}{n} \| w \tilde{D}f \|_1. \tag{2.19}
\]

Next, we focus on the estimating of the other multiplier in (2.18). Clearly,

\[
\left(\frac{1-x}{n+1} \right)^{n+k+1} m_{n,k}(x) = \frac{(n+k+1)^\ell (n+1) \cdots (n+k+1) (n+1) \cdots (n+k+1) \cdots (n+1)^\ell}{(n+k+1)^{n+k+1}} m_{n+\ell,k}(x)
\]

\[
\leq C(\ell) m_{n+\ell,k}(x)
\]

\[
\leq C(\ell) \frac{\gamma_{n+\ell,k}}{\gamma_{n,k}} m_{n+\ell,k}(x).
\]

Observe that the constant \(C(\ell) \) depends only on \(\alpha \).

We shall make use of the following operator defined by

\[
\tilde{M}_{n,\alpha}(f; x) = \sum_{k=0}^{\infty} \gamma_{n+\ell,k} m_{n+\ell,k}(x) \int_{\Delta_n,k} f(u) du. \tag{2.20}
\]

Then,

\[
\sum_{k=0}^{\infty} \left(\frac{w(x)}{w(\frac{k}{n+k+1})} \right)^{n+k+1} b_{n,k} m_{n,k}(x) \leq C \tilde{M}_{n,\alpha} \left(\int_x^{(\cdot)} |\phi(\cdot) - \phi(u)||w \tilde{D}f(u)| du; x \right).
\tag{2.21}
\]

In order to estimate the \(L_1 \)-norm of the right-hand side in (2.21) we follow an approach applied, e.g., in [2, pp. 41–43]. The proof in our case is much more complicated, because the operator \(\tilde{M}_{n,\alpha} \) does not preserve the constant functions. More precisely, it has the properties

\[
\| \tilde{M}_{n,\alpha} \|_1 = 1, \quad \tilde{M}_{n,\alpha}(1; x) = \sum_{k=0}^{\infty} \frac{\gamma_{n+\ell,k}}{\gamma_{n,k}} m_{n+\ell,k}(x).
\]

Let us write the operator \(\tilde{M}_{n,\alpha} \) from (2.20) in the form

\[
\tilde{M}_{n,\alpha}(f; x) = \int_0^{1} K_n(x,t) f(t) dt,
\]

where $K_n(\cdot, \cdot)$ is the related kernel. Introducing the functions

$$
\phi_1(x) = \ln x, \quad \phi_2(x) = -\ln(1 - x), \quad \phi_3(x) = \frac{1}{1 - x},
$$

we have $\phi(x) = \phi_1(x) + \phi_2(x) + \phi_3(x)$ and for $j = 1, 2, 3$,

$$
\tilde{M}_{n, \alpha} \left(\int_x^x [\phi_j(\cdot) - \phi_j(u)][(|\tilde{D}f|)(u)] du; x \right)
\begin{aligned}
&= \int_0^x K_n(x, t) \int_x^t [\phi_j(t) - \phi_j(u)][(\tilde{D}f)(u)] du \, dt \\
&\quad + \int_x^1 K_n(x, t) \int_x^t [\phi_j(t) - \phi_j(u)][(\tilde{D}f)(u)] du \, dt.
\end{aligned}
$$

Then, by Fubini’s theorem we obtain:

$$
\left\| \tilde{M}_{n, \alpha} \int_x^x [\phi(\cdot) - \phi(u)][(\tilde{D}f)(u)] du \right\|_1
\begin{aligned}
&= \int_0^1 (\tilde{D}f)(u) \sum_{j=1}^3 \left(\int_u^1 \tilde{M}_{n, \alpha} \left([\phi_j(u) - \phi_j(\cdot)]_+ ; x \right) dx \\
&\quad + \int_0^u \tilde{M}_{n, \alpha} \left([\phi_j(\cdot) - \phi_j(u)]_+ ; x \right) dx \right) du. \quad (2.22)
\end{aligned}
$$

To estimate the right-hand side of (2.22) we need estimations for the expressions in the sum for each of the functions ϕ_j, $j = 1, 2, 3$.

First, for ϕ_1, using

$$
\int_0^1 \tilde{M}_{n, \alpha} \left([\phi_1(u) - \phi_1(\cdot)]_+ ; x \right) dx = \| \tilde{M}_{n, \alpha} \left([\phi_1(u) - \phi_1(\cdot)]_+ ; x \right) \|_1
\begin{aligned}
&\leq \| [\phi_1(u) - \phi_1(x)]_+ \|_1 \\
&= \int_0^u (\phi_1(u) - \phi_1(x)) \, dx,
\end{aligned}
$$

we have

$$
\int_u^1 \tilde{M}_{n, \alpha} \left([\phi_1(u) - \phi_1(\cdot)]_+ ; x \right) dx + \int_0^u \tilde{M}_{n, \alpha} \left([\phi_1(\cdot) - \phi_1(u)]_+ ; x \right) dx
\begin{aligned}
&= \int_0^1 \tilde{M}_{n, \alpha} \left([\phi_1(u) - \phi_1(\cdot)]_+ ; x \right) dx - \int_0^u \tilde{M}_{n, \alpha} \left([\phi_1(u) - \phi_1(\cdot)]_+ ; x \right) dx \\
&\quad + \int_0^u \tilde{M}_{n, \alpha} \left([\phi_1(\cdot) - \phi_1(u)]_+ ; x \right) dx
\end{aligned}
$$
\[\begin{align*}
&\leq \int_0^u (\phi_1(u) - \phi_1(x)) \, dx + \int_0^u \tilde{M}_{n,\alpha}([\phi_1(\cdot) - \phi_1(u)]_+ - [\phi_1(u) - \phi_1(\cdot)]_+ : x) \, dx \\
&= u\phi_1(u) - \int_0^u \phi_1(x) \, dx + \int_0^u \tilde{M}_{n,\alpha}(\phi_1 ; x) \, dx - \phi_1(u) \int_0^u \tilde{M}_{n,\alpha}(1 ; x) \, dx \\
&= \int_0^u (\tilde{M}_{n,\alpha}(\phi_1 ; x) - \phi_1(x)) \, dx - \phi_1(u) \int_0^u (\tilde{M}_{n,\alpha}(1 ; x) - 1) \, dx.
\end{align*} \] (2.23)

Analogously, for \(\phi_j \), \(j = 2, 3 \), we obtain
\[\begin{align*}
&\int_1^1 \tilde{M}_{n,\alpha}([\phi_j(u) - \phi_j(\cdot)]_+ : x) \, dx + \int_1^u \tilde{M}_{n,\alpha}([\phi_j(\cdot) - \phi_j(u)]_+ ; x) \, dx \\
&\leq \int_1^1 (\tilde{M}_{n,\alpha}(\phi_j ; x) - \phi_j(x)) \, dx - \phi_j(u) \int_1^1 (\tilde{M}_{n,\alpha}(1 ; x) - 1) \, dx.
\end{align*} \] (2.24)

Since for \(x, u \in (0, 1) \),
\[|\tilde{M}_{n,\alpha}(1 ; x) - 1| = \left| \sum_{k=0}^{\infty} \frac{\gamma_{n,k}^{+\ell,k}}{\gamma_{n,k}} m_{n,+\ell,k}(x) - 1 \right| \leq \frac{C}{n}, \]
\[|u\phi_1(u)| \leq C, \quad |(1 - u)\phi_2(u)| \leq C, \quad |(1 - u)\phi_3(u)| \leq C, \]
then
\[\begin{align*}
|\phi_1(u) \int_0^u (\tilde{M}_{n,\alpha}(1 ; x) - 1) \, dx| &\leq \frac{C}{n}, \\
|\phi_j(u) \int_1^1 (\tilde{M}_{n,\alpha}(1 ; x) - 1) \, dx| &\leq \frac{C}{n}, \quad j = 2, 3.
\end{align*} \] (2.25)

1. **Estimation of** \(\left| \int_0^u (\tilde{M}_{n,\alpha}(\phi_1 ; x) - \phi_1(x)) \, dx \right| \). **We have**
\[\int_{\Delta_{n,k}} \phi_1(t) \, dt = \frac{k + 1}{n + k + 2} \ln \frac{k + 1}{n + k + 2} - \frac{k}{n + k + 1} \ln \frac{k}{n + k + 1} - \frac{1}{\gamma_{n,k}}, \]
and for \(x \in (0, 1) \),
\[\phi_1(x) = -\sum_{k=1}^{n+\ell} \frac{(1 - x)^k}{k} - \sum_{k=n+\ell+1}^{\infty} \frac{(1 - x)^k}{k}. \]

By Lemma 2,
\[\sum_{k=1}^{n+\ell} \frac{(1 - x)^k}{k} = \sum_{k=0}^{\infty} m_{n,\ell,k}(x) \sum_{i=1}^{n+\ell} \frac{1}{k+i}. \]
and therefore
\[
\left| \int_0^u (\tilde{M}_{n,\alpha}(\phi_1; x) - \phi_1(x)) \, dx \right|
\]
\[
= \left| \int_0^u \sum_{k=0}^\infty m_{n+\ell,k}(x) \left[\gamma_{n+\ell,k} \int_{\Delta_{n,k}} \phi_1(t) \, dt + \sum_{i=1}^{n+\ell} \frac{1}{k+i} \right] \, dx + \int_0^u \sum_{k=n+\ell+1}^\infty \frac{(1-x)^k}{k} \, dx \right|
\]
\[
\leq \left| \int_0^u \sum_{k=0}^\infty m_{n+\ell,k}(x) \left[\gamma_{n+\ell,k} \int_{\Delta_{n,k}} \phi_1(t) \, dt + \sum_{i=1}^{n+\ell} \frac{1}{k+i} \right] \, dx \right| + \frac{C}{n}.
\]

For \(k \geq 1 \),
\[
\ln \frac{k+1}{n+k+2} = -\ln \prod_{i=1}^{n+1} \frac{k+i+1}{k+i} = -\sum_{i=1}^{n+1} \ln \left(1 + \frac{1}{k+i} \right)
\]
\[
= -\sum_{i=1}^{n+1} \left[\frac{1}{k+i} - \frac{1}{2(k+i)^2} + \mathcal{O}\left(\frac{1}{(k+i)^3} \right) \right],
\]
and
\[
\sum_{i=1}^{n+1} \frac{1}{(k+i)^2} = \sum_{i=1}^{n+1} \left[\frac{1}{(k+i)(k+i+1)} + \mathcal{O}\left(\frac{1}{(k+i)^3} \right) \right]
\]
\[
= \frac{n+1}{(k+1)(n+k+2)} + \sum_{i=1}^{n+1} \mathcal{O}\left(\frac{1}{(k+i)^3} \right),
\]
hence
\[
\ln \frac{k+1}{n+k+2} = -\sum_{i=1}^{n+1} \frac{1}{k+i} + \frac{n+1}{2(k+1)(n+k+2)} + \mathcal{O}\left(\frac{1}{k^2} \right).
\]
Since
\[
\frac{k+1}{n+k+2} \mathcal{O}\left(\frac{1}{k^2} \right) = \mathcal{O}\left(\frac{1}{k^2} \right),
\]
then
\[
\frac{k+1}{n+k+2} \ln \frac{k+1}{n+k+2} = -\frac{k+1}{n+k+2} \sum_{i=1}^{n+1} \frac{1}{k+i} + \frac{n+1}{2(n+k+2)^2} + \mathcal{O}\left(\frac{1}{k^2} \right).
\]
Similarly,
\[
\frac{k}{n+k+1} \ln \frac{k}{n+k+1} = -\frac{k}{n+k+1} \sum_{i=0}^{n} \frac{1}{k+i} + \frac{n+1}{2(n+k+1)^2} + \mathcal{O}\left(\frac{1}{k^2} \right).
\]

Therefore,

\[
\int_{\Delta_{n,k}} \phi_1(t) \, dt = \frac{k}{n + k + 1} \sum_{i=0}^{n} \frac{1}{k + i} - \frac{k + 1}{n + k + 2} \sum_{i=1}^{n+1} \frac{1}{k + i} - \frac{n + 1}{2} \left[\frac{1}{(n + k + 1)^2} - \frac{1}{(n + k + 2)^2} \right] + O\left(\frac{1}{k^2}\right) - \frac{1}{\gamma_{n,k}} \sum_{i=0}^{n} \frac{1}{k + i} + O\left(\frac{1}{k^2}\right).
\]

Now, we have

\[
|M_{n,\alpha}(\phi_1; x) - \phi_1(x)| \leq m_{n,\ell,0}(x) \left|\ln(n + 2) + 1 - \sum_{i=1}^{n+\ell} \frac{1}{i}\right| + \sum_{k=1}^{\infty} m_{n,\ell,k}(x) \left|\frac{\gamma_{n,\ell,k}}{\gamma_{n,k}} \sum_{i=1}^{n} \frac{1}{k + i} - \sum_{i=1}^{n+\ell} \frac{1}{k + i}\right| + \frac{C}{n}.
\]

From

\[
\left|\ln(n + 2) + 1 - \sum_{i=1}^{n+\ell} \frac{1}{i}\right| \leq C, \quad \|m_{n,\ell,0}\|_1 \leq \frac{C}{n},
\]

it follows

\[
\left\|m_{n,\ell,0}(x) \left|\ln(n + 2) + 1 - \sum_{i=1}^{n+\ell} \frac{1}{i}\right|\right\|_1 \leq \frac{C}{n}.
\]

Moreover,

\[
\sum_{k=1}^{\infty} m_{n,\ell,k}(x) \left|\frac{\gamma_{n,\ell,k}}{\gamma_{n,k}} \sum_{i=1}^{n} \frac{1}{k + i} - \sum_{i=1}^{n+\ell} \frac{1}{k + i}\right| \leq \sum_{k=1}^{\infty} m_{n,\ell,k}(x) \left|\frac{\gamma_{n,\ell,k}}{\gamma_{n,k}} - 1\right| \sum_{i=1}^{n} \frac{1}{k + i} + \sum_{k=1}^{\infty} m_{n,\ell,k}(x) \sum_{i=n+1}^{n+\ell} \frac{1}{k + i}.
\]

Now, the inequalities

\[
\left|\frac{\gamma_{n,\ell,k}}{\gamma_{n,k}} - 1\right| \leq \frac{C}{n}, \quad \sum_{k=1}^{\infty} m_{n,\ell,k}(x) \sum_{i=n+1}^{n+\ell} \frac{1}{k + i} \leq \frac{C}{n} \sum_{k=1}^{\infty} m_{n,\ell,k}(x) \sum_{i=1}^{n} \frac{1}{k + i} + \frac{C}{n},
\]

yield

\[
\sum_{k=1}^{\infty} m_{n,\ell,k}(x) \left|\frac{\gamma_{n,\ell,k}}{\gamma_{n,k}} \sum_{i=1}^{n} \frac{1}{k + i} - \sum_{i=1}^{n+\ell} \frac{1}{k + i}\right| \leq \frac{C}{n} \sum_{k=1}^{\infty} m_{n,\ell,k}(x) \sum_{i=1}^{n} \frac{1}{k + i} + \frac{C}{n}.
\]
By Lemma 2 we obtain
\[
\sum_{k=1}^{\infty} m_{n+\ell,k}(x) \sum_{i=1}^{n} \frac{1}{k+i} \leq \sum_{k=1}^{\infty} m_{n+\ell,k}(x) \sum_{i=1}^{n+\ell} \frac{1}{k+i} \leq |\ln x|.
\]

Therefore,
\[
\left| \int_{0}^{u} \sum_{k=1}^{\infty} m_{n+\ell,k}(x) \sum_{i=1}^{n} \frac{1}{k+i} \, dx \right| \leq \left| \int_{0}^{u} \ln x \, dx \right| \leq \left| \int_{0}^{1} \ln x \, dx \right| \leq C,
\]
and we conclude that
\[
\left| \int_{0}^{u} (\tilde{M}_{n,\alpha}(\phi_1; x) - \phi_1(x)) \, dx \right| \leq \frac{C}{n}.
\] (2.26)

2. Estimation of \(\left| \int_{u}^{1} (\tilde{M}_{n,\alpha}(\phi_2; x) - \phi_2(x)) \, dx \right| \). We have
\[
\int_{\Delta_{n,k}} \phi_2(t) \, dt = \frac{n+1}{n+k+2} \ln \frac{n+1}{n+k+2} - \frac{n+1}{n+k+1} \ln \frac{n+1}{n+k+1} + \frac{1}{\gamma_{n,k}},
\]
\[
\gamma_{n,k} \int_{\Delta_{n,k}} \phi_2(t) \, dt = 1 - (n+k+1) \ln \left(1 + \frac{1}{n+k+1} \right) - \ln \frac{n+1}{n+k+1}
\]
\[
= \ln \frac{n+k+1}{n+1} + O \left(\frac{1}{n+k} \right),
\]
hence,
\[
M_{n,\alpha}(\phi_2; x) = \sum_{k=0}^{\infty} m_{n+\ell,k}(x) \frac{\gamma_{n+\ell,k}}{\gamma_{n,k}} \left[\ln \frac{n+k+1}{n+1} + O \left(\frac{1}{n+k} \right) \right].
\]

Applying Lemma 3 we obtain
\[
\left| \phi_2(x) - \sum_{k=0}^{\infty} m_{n+\ell,k}(x) \sum_{i=1}^{k+1} \frac{1}{n+\ell+i} \right| \leq \frac{C}{n},
\]
and then
\[
\left| \tilde{M}_{n,\alpha}(\phi_2; x) - \phi_2(x) \right| \leq \sum_{k=0}^{\infty} m_{n+\ell,k}(x) \frac{\gamma_{n+\ell,k}}{\gamma_{n,k}} \ln \frac{n+k+1}{n+1} - \sum_{i=1}^{k+1} \frac{1}{n+\ell+i} \right| + \frac{C}{n}.
\]
Taking into account that
\[
\ln \frac{n+k+1}{n+1} = \sum_{i=1}^{k} \ln \left(1 + \frac{1}{n+i} \right) = \sum_{i=1}^{k} \frac{1}{n+i} + \sum_{i=1}^{k} O \left(\frac{1}{(n+i)^2} \right)
\]
\[
\text{Ann. Sofia Univ., Fac. Math and Inf., 105, 2018, 75–95.}
and
\[\sum_{i=1}^{k} \frac{1}{(n+i)^2} \leq \frac{C}{n}, \]
we estimate
\[|\tilde{M}_{n,\alpha}(\phi_2; x) - \phi_2(x)| \leq \sum_{k=0}^{\infty} m_{n+\ell,k}(x) \left| \frac{\gamma_{n+\ell,k}}{\gamma_{n,k}} \sum_{i=1}^{k} \frac{1}{n+i} - \sum_{i=1}^{k+1} \frac{1}{n+\ell+i} \right| + \frac{C}{n} \]
\[\leq \sum_{k=0}^{\infty} m_{n+\ell,k}(x) \left| \frac{\gamma_{n+\ell,k}}{\gamma_{n,k}} - 1 \right| \sum_{i=1}^{k} \frac{1}{n+i} - \sum_{i=1}^{k+1} \frac{1}{n+\ell+i} \]
\[+ \sum_{k=0}^{\infty} m_{n+\ell,k}(x) \left| \sum_{i=1}^{k} \frac{1}{n+i} - \sum_{i=1}^{k+1} \frac{1}{n+\ell+i} \right| + \frac{C}{n}. \]

Since
\[\left| \frac{\gamma_{n+\ell,k}}{\gamma_{n,k}} - 1 \right| \leq \frac{C}{n}, \]
it follows that
\[\sum_{k=0}^{\infty} m_{n+\ell,k}(x) \left| \frac{\gamma_{n+\ell,k}}{\gamma_{n,k}} - 1 \right| \sum_{i=1}^{k} \frac{1}{n+i} - \sum_{i=1}^{k+1} \frac{1}{n+\ell+i} \leq \frac{C}{n} \sum_{k=0}^{\infty} m_{n+\ell,k}(x) \sum_{i=1}^{k} \frac{1}{n+i}. \]

Observe that
\[\sum_{k=0}^{\infty} m_{n+\ell,k}(x) \left| \sum_{i=1}^{k} \frac{1}{n+i} - \sum_{i=1}^{k+1} \frac{1}{n+\ell+i} \right| \leq \sum_{k=0}^{\infty} m_{n+\ell,k}(x) \sum_{i=1}^{\ell} \frac{1}{n+i} \leq \frac{C}{n}. \]

We recall that \(\ell = \lceil |\alpha| \rceil \text{sign} (\alpha) \) and \(C = C(\alpha) \), i.e. \(C \) is an absolute constant for a fixed \(\alpha \). Then, by Lemma 3 we obtain
\[\sum_{k=0}^{\infty} m_{n+\ell,k}(x) \left| \frac{\gamma_{n+\ell,k}}{\gamma_{n,k}} - 1 \right| \sum_{i=1}^{k} \frac{1}{n+i} \]
\[\leq \frac{C}{n^2} + \frac{C}{n} \ln(1-x) + \sum_{k=0}^{\infty} m_{n+\ell,k}(x) \sum_{i=1}^{k+1} \frac{1}{n+\ell+i} + \frac{C}{n} \ln(1-x) \]
\[\leq \frac{C}{n^2} + \frac{C}{n^2} + \frac{C}{n} |\ln(1-x)|. \]

Therefore,
\[\left| \int_{u}^{1} (\tilde{M}_{n,\alpha}(\phi_2; x) - \phi_2(x)) \, dx \right| \leq \frac{C}{n} \int_{0}^{1} (2 - \ln(1-x)) \, dx \leq \frac{C}{n}. \]
(2.27)
3. Estimation of \(\int_u^1 (\tilde{M}_{n,\alpha}(\phi_3; x) - \phi_3(x)) \, dx \). The last estimation we need concerns the function \(\phi_3(x) = \frac{1}{1-x} \). We have
\[
\int_{\Delta_n,k} \phi_3(t) \, dt = \ln \left(1 + \frac{1}{n+k+1} \right) = \frac{1}{n+k+1} + \mathcal{O} \left(\frac{1}{(n+k)^2} \right),
\]
\[
\gamma_{n,k} \int_{\Delta_n,k} \phi_3(t) \, dt = \frac{n+k+2}{n+1} + \mathcal{O} \left(\frac{1}{n} \right).
\]
By Lemma 1,
\[
\phi_3(x) = \frac{1}{n+\ell+1} \sum_{k=0}^{\infty} (n+\ell+k+1)m_{n+\ell,k}(x),
\]
hence
\[
|M_{n,\alpha}(\phi_3; x) - \phi_3(x)| \leq \sum_{k=0}^{\infty} m_{n+\ell,k}(x) \frac{n+k+\ell+1}{n+\ell+1} \left(\frac{n+k+\ell+2}{n+k+1} - 1 \right) + \mathcal{O} \left(\frac{1}{n} \right)
\]
\[
= \sum_{k=0}^{\infty} m_{n+\ell,k}(x) \frac{n+k+\ell+1}{n+\ell+1} \cdot \frac{\ell+1}{n+k+1} + \mathcal{O} \left(\frac{1}{n} \right) = \mathcal{O} \left(\frac{1}{n} \right).
\]
Then
\[
\left| \int_u^1 (\tilde{M}_{n,\alpha}(\phi_3; x) - \phi_3(x)) \, dx \right| \leq \frac{C}{n} \int_u^1 \, dx \leq \frac{C}{n}. \quad (2.28)
\]
Now, from inequalities (2.22)–(2.28) it follows that
\[
\left\| \tilde{M}_{n,\alpha} \int_x^{(\cdot)} \left[\phi(\cdot) - \phi(u) \right] (w\tilde{D}f)(u) \, du \right\|_1 \leq \frac{C}{n}. \quad (2.29)
\]
The estimate (2.17) is a consequence of (2.18), (2.19), (2.21), and (2.29).

Finally, the estimate (2.13) for the case \(p = 1 \) follows from (2.14), (2.15) and (2.17).

The case \(p = \infty \).

We proceed similarly to the case \(p = 1 \): applying Holder’s inequality for the smallest integer \(\geq \alpha \), considering again the operator \(\tilde{M}_{n,\alpha} \) and using the following estimation
\[
\tilde{M}_{n,\alpha} \left(\int_x^{(\cdot)} \left[\phi(\cdot) - \phi(u) \right] (w\tilde{D}f)(u) \, du; x \right)
\]
\[
\leq \|w\tilde{D}f\|_{\infty} \tilde{M}_{n,\alpha} \left(\int_x^{(\cdot)} \left[\phi(\cdot) - \phi(u) \right] \, du; x \right)
\]
\[
\leq x |\tilde{M}_{n,\alpha}(\ln t; x) - \ln x| \|w\tilde{D}f\|_{\infty} + (1-x) |\tilde{M}_{n,\alpha}(\frac{1}{1-t}; x) - \frac{1}{1-x} \|w\tilde{D}f\|_{\infty} + x |\tilde{M}_{n,\alpha}(\ln(1-t); x) - \ln(1-x)| \|w\tilde{D}f\|_{\infty}.
\]
\[\square\]
For the proof of Theorem 2 we need a weighted variant of (2.8).
Lemma 8. Let $1 < p < \infty$. Then, for all functions $f \in L_p(w)$ such that $\varphi D^2 f \in L_p(w)$, there exists a constant C such that the next inequality is true
\[
\|wD\varphi Df\|_p \leq C(\|wf\|_p + \|w\varphi D^2 f\|_p).
\]

Proof. The proof is analogous to the proof of [16, Lemma 3], using the obvious
\[
|D\varphi(x)| = |(1-x)(1-3x)| < 2(1-x), \quad 0 \leq x < 1,
\]
and $w(x) \sim w(1 - 2^{-k})$ for $x \in (1 - 2^{-k}, 1 - 2^{-k-1})$. \hfill \Box

3. PROOFS OF THEOREM 1 AND THEOREM 2

Proof of Theorem 1. We establish the direct inequality by means of a standard argument.

Let $1 \leq p \leq \infty$. For any $g \in W_p(w)$ such that $f - g \in L_p(w)$ we have, by virtue of (2.11) and Lemma 7,
\[
\|w(f - \tilde{M}_n f)\|_p \leq \|w(f - g)\|_p + \|w(g - \tilde{M}_n g)\|_p + \|w\tilde{M}_n(f - g)\|_p
\]
\[
\leq 2\|w(f - g)\|_p + \frac{C}{n} \|w\tilde{D} g\|_p
\]
\[
\leq C\left(\|w(f - g)\|_p + \frac{1}{n} \|w\tilde{D} g\|_p\right).
\]
Taking the infimum on g we obtain the inequality (1.7) in the theorem. \hfill \Box

Proof of Theorem 2. For every $c \in \mathbb{R}$, by virtue of Lemma 8, we have
\[
\|wD\varphi Dg\|_p = \|wD\varphi D(g - c)\|_p
\]
\[
\leq C(\|w\varphi D^2 (g - c)\|_p + \|w(g - c)\|_p)
\]
\[
= C(\|w\varphi D^2 g\|_p + \|w(g - c)\|_p).
\]
Using the latter inequality and the obvious
\[
\|w\tilde{D} g\|_p \leq \|wD\varphi Dg\|_p + \|w\varphi D^2 g\|_p,
\]
we have for $t > 0$
\[
\|w(f - g)\|_p + t\|w\tilde{D} g\|_p
\]
\[
\leq \|w(f - g)\|_p + t\|wD\varphi Dg\|_p + t\|w\varphi D^2 g\|_p
\]
\[
= \|w(f - g)\|_p + Ct(\|w\varphi D^2 g\|_p + \|w(g - c)\|_p) + t\|w\varphi D^2 g\|_p
\]
\[
\leq C(\|w(f - g)\|_p + t\|w\varphi D^2 g\|_p) + Ct\|w(g - f + f - c)\|_p
\]
\[
\leq C(\|w(f - g)\|_p + t\|w\varphi D^2 g\|_p) + Ct\|w(g - f)\|_p + Ct\|w(f - c)\|_p
\]
\[
\leq C(\|w(f - g)\|_p + t\|w\varphi D^2 g\|_p + t\|w(f - c)\|_p).
\]

By taking infimum over all functions $g \in W_p(w)$ and all real constants c we obtain the inequality

$$
\tilde{K}_w(f, t)_p \leq C \inf \{ \|w(f - g)\|_p + t \|w \varphi D^2 g\|_p : f - g \in L_p(w), g \in W_p(w) \}
+ CtE_0(f).
$$

To complete the proof in the case $\alpha \geq 0$, it remains to take into consideration that in the definition of $K_w(f, t)_p$ we can, equivalently, assume that g is in C^2 in a neighbourhood of 0 if $f \in L_p(w)$ (see [3, p. 110]).

To complete the proof for $\alpha < 0$, we will show that if $g, Dg \in AC_{loc}(0, 1)$ and $wg, w \varphi D^2 g \in L_p[0, 1)$, then

$$
\lim_{x \to 1^-} \varphi(x)Dg(x) = 0.
$$

To this end, we first apply [5, Lemma 1] to get $(1 - x)^{\alpha + 1}Dg(x) \in L_p[1/2, 1)$.

Next, we use [8, Lemma 3.1(a)], transformed for a singularity at $x = 1$, with $G = \varphi Dg$ and $\gamma = \alpha - 1 < -1$ to derive

$$
\lim_{x \to 1^-} G(x) = \lim_{x \to 1^-} \varphi(x)Dg(x) = 0.
$$

\[\square\]

Acknowledgement. The first author is supported by the Bulgarian Ministry of Education and Science under the National Research Programme “Young scientists and postdoctoral students” approved by DCM # 577/17.08.2018. The third author is supported by the Bulgarian National Research Fund under Contract DN 02/14.

4. REFERENCES

Ivan Gadjev, Parvan Parvanov, Rumen Uluchev

Department of Mathematics and Informatics
University of Sofia
5 James Bourchier Blvd.
1164 Sofia
BULGARIA

E-mails: {gadjevivan, pparvan, rumenu}@fmi.uni-sofia.bg